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RESEARCH

ABSTRACT

Researchers are increasingly able to capture 

spatially referenced data on both a response and 

a covariate more frequently and in more detail. A 

combination of geostatisical models and analy-

sis of covariance methods may be used to ana-

lyze such data. However, very basic questions 

regarding the effects of using a covariate whose 

support differs from that of the response vari-

able must be addressed to utilize these methods 

most effi ciently. In this experiment, a simulation 

study was conducted to assess the following: (i) 

the gain in effi ciency when geostatistical models 

are used, (ii) the gain in effi ciency when analy-

sis of covariance methods are used, and (iii) 

the effects of including a covariate whose sup-

port differs from that of the response variable 

in the analysis. This study suggests that analy-

ses which both account for spatial structure and 

exploit information from a covariate are most 

powerful. Also, the results indicate that the sup-

port of the covariate should be as close as pos-

sible to the support of the response variable to 

obtain the most accurate experimental results.
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Recent advances in precision agriculture have provided 
researchers with the ability to collect various measurements 

such as infrared and visible light refl ectance data (Servilla, 1998), 
which are indicative of such factors as moisture status during vari-
ous stages of crop development (Bryant et al., 2003), and “on-the-
go” data during harvest such as electrical conductivity readings 
(McGuire, 2003), yield, and test-weight readings (Wehrspann, 
2000). Similar data are also available from satellite imagery (Fra-
zier et al., 2004). These data points are typically associated with 
extremely dense spatial coordinates, thus creating the opportunity 
to use these measurements as covariates for the primary response 
variable to possibly increase experimental precision. As technolo-
gies continue to improve concerning on-the-go data collection 
and the precision of imagery, the importance and potential impact 
of utilizing such data in planned experiments will increase.

In addition to the growing availability of massive amounts 
of spatially coordinated data, researchers have witnessed a rapid 
increase in the speed and power of computers, which allows 
researchers to eff ectively manage such data. Also, a collection of 
geostatistical models allows the researcher to both characterize and 
account for the underlying spatial patterns in their data, leading 
to potentially more precise estimation ( Journel and Huijbregts, 
1978; Isaaks and Srivastava, 1989; Cressie, 1993). A good intro-
duction to geostatistical methods is given by Littell et al. (1996) in 
a chapter dealing with spatial variability. Ultimately, the parallel 
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increases in computer technology and the ability to collect 
(or access) spatial data has created a need for research on 
how to manage data and use resources effi  ciently.

As mentioned, these large data sets provide researchers 
with the opportunity to use some measurements as covari-
ates, thereby improving estimation by utilizing infor-
mation about one variable that is contained in another. 
Analysis of covariance methods are used to analyze such 
data (Searle, 1971). However, basic questions need to be 
answered regarding the use of intensively collected data 
points as covariates in analyzing data collected over an 
entire plot (e.g., yield) or data collected at a single point in 
a plot to represent the entire plot (e.g., soil chemistry from 
a soil probe). For example, would greater experimental 
precision be obtained by utilizing all intensively collected 
data points from a plot as covariates for a trait such as 
yield, or would some subset of the intensively collected 
data points provide greater experimental precision? This 
question is related to what is widely known in geostatistics 
as the change of support problem (Olea, 1991; Cressie, 
1993; Schabenberger and Gotway, 2005). The support of 
the data refers to the length, area, or volume that a mea-
sured datum represents. Note that in many cases the data 
is collected at a single point; thus, it is said to have “point 
support.” If all intensively collected data points are uti-
lized in the analysis (e.g., by obtaining a block average 
of all data points included in a plot and using the block 
average as the new variable), then the support of the data 
has been changed. Eff ectively, this block average is a new 
variable, and the statistical and spatial properties of this 
new variable diff er from those of the original. In particu-
lar, the spatial structure and parameters such as the range 
and sill of the corresponding semivariogram for this new 
variable are altered.

For example, a variable of point support may be asso-
ciated with a semivariogram such as the one shown in Fig. 
1. This particular example illustrates a spherical model. 
This is one of the geostatistical models referenced earlier, 
which allows us to characterize and account for underly-
ing spatial variability. In general, the semivariogram is a 
measure of the average dissimilarity between data sepa-
rated by a distance h. Note that since this function is a 
measure of dissimilarity, we see that the value of the semi-
variogram increases with lag distance h. The parameters 
of the semivariogram are the range, sill, and nugget. For 
the spherical semivariogram, the range is defi ned as the 
critical distance above which observations become inde-
pendent and beyond which the model function returns a 
constant value, the sill. The sill is equal to the variance 
of independent observations. Finally, the nugget describes 
microscale variation that may cause a discontinuity at the 
origin. Changing the support of the data by averaging 
over observations will change these parameter values and 
may possibly change the results of the analysis considerably 

(Clark, 1979). In addition to the conventional change of 
support problem, questions also arise regarding the eff ects 
of conducting an analysis of covariance when the response 
variable and the covariate are of diff erent supports.

To answer such questions, one would ideally know the 
true values of the treatment and response variables along 
with their spatial structure and conduct numerous repli-
cates of each experiment to place confi dence in the results. 
Simulation studies provide such capacity. Therefore, the 
objectives of this research were to conduct a simulation 
study to explore (i) the gain in effi  ciency when methods 
that exploit spatial structure are utilized, (ii) the gain in 
effi  ciency when methods that exploit information from a 
covariate are utilized, and (iii) the eff ects of including a 
covariate whose support diff ers from that of the response 
variable in the analysis.

MATERIALS AND METHODS
The simulated experiment consisted of fi ve replications of fi ve 

treatments. The treatments were laid out in a completely ran-

domized design on a 5 × 5 arrangement of plots and were ran-

domly assigned to the plots in each iteration. Within each plot, 

another 5 × 5 grid of points was constructed (Fig. 2). For each 

of the 625 points, both a spatial fl oor (Y ) and a spatial covariate 

(X ) were generated using the method of Gaussian cosimulation 

(Oliver, 2003). This method is described as follows: let

= +1 1 1Y Lμ Z

and

= + ( + - )2
2 2 1 21X Lμ ρ ρZ Z

 

Figure 1. Example of a spherical semivariogram.

Figure 2. Layout for data generation.



R
e
p
ro

d
u
c
e
d

fr
o
m

C
ro

p
S

c
ie

n
c
e
.

P
u
b
lis

h
e
d

b
y

C
ro

p
S

c
ie

n
c
e

S
o
c
ie

ty
o
f

A
m

e
ri
c
a
.

A
ll

c
o
p
y
ri
g
h
ts

re
s
e
rv

e
d
.

624 WWW.CROPS.ORG CROP SCIENCE, VOL. 47, MARCH–APRIL 2007

where L
1
 and L

2
 are the square roots (which can be obtained 

via methods such as the Cholesky decomposition and spectral 

decomposition) of given covariance matrices, μ
1
 and μ

2
 are the 

means of Y and X, and Z
1
 and Z

2
 are vectors of independent nor-

mally distributed random variables with mean 0 and variance 1. 

Then, it is easily shown that the covariance of Y is cov(Y )=L
1
L

1
', 

the covariance of X is cov(X)=L
2
L

2
', and the cross-covariance of 

Y and X can be written as  cov(Y,X)=ρ L
1
L

2
'  (Oliver, 2003).

Note that the parameter ρ (–1≤ ρ≤ 1) determines the 

strength of the relationship that exists between the spatial fl oor 

and the covariate.

In this simulation, the spherical covariance function with a 

nugget of zero was used for the construction of both variables. 

The function is as follows:

{ }( ) + ( )    
( ) =     >

3 1
2 2

2 31- if 0

0 if

h h
a a

h a
C h

h a

⎧⎪⎪ σ ≤ ≤⎨⎪⎪⎩
where h is the distance between observations, a is the range of the 

corresponding spherical semivariogram, and σ2 is the sill of the 

semivariogram. Y was simulated with a range of 25 and a sill of 5. 

X, the covariate, was simulated with a range of 15 and a sill of 5. 

Finally, two correlation values were considered when modeling 

the cross-covariance between the spatial fl oor and the covariate 

so that both a weak and a strong relationship between the two 

variables could be considered: ρ =.3 and  ρ =.7. Treatment eff ects 

were generated with the following treatment vectors τ:

1
3

= (     ),

= (   )

= (     )

1 1
2 2

-3 -31 1 1 1
3 3 2 3 2 3

-1, - , 0, ,1

, , , , , and

0, 0, 0, 0, 0

τ

τ

τ
The fi rst vector represents the case where treatment eff ects 

are equally spaced, while the second vector represents the case 

where treatments are set up in a maximum–minimum confi gu-

ration. Note that both cases represent the same noncentrality 

parameter, hence the null hypothesis for no treatment eff ect 

should be rejected similarly. Finally, the last vector corresponds 

to the case where there is no treatment eff ect.

A response variable and a covariate were created for each 

plot as follows. A response consisting of the sum of the spatial 

fl oor and the treatment eff ect was generated for each of the 625 

points. The response variable for each of the 25 plots was then 

generated by averaging the responses of all points within a plot. 

Note that this is analogous to a researcher collecting data on a 

response such as yield over an entire plot. Then, to investigate 

whether or not greater experimental precision can be obtained 

by utilizing all intensively collected data points, three diff erent 

covariates were considered. First, the covariate for each plot 

was taken to be the center point of the 5 × 5 grid contained 

in that plot (Fig. 3a). Second, the covariate for each plot was 

obtained by averaging the simulated covariate values for all data 

points in the central 3 × 3 square of each plot (Fig. 3b). These 

two situations investigate the eff ects of using only a subset of 

the collected data points on experimental precision. Finally, 

the covariate was obtained by averaging all 25 of the simulated 

covariate values within each plot (Fig. 3c) to represent the case 

where all intensively collected data points are incorporated into 

the analysis. Note that in this case, the support of the response 

variable and covariate are identical.

Recall that this study considered two values for ρ. In both 

cases, 1000 data sets were simulated using the same seed value 

for each ρ; thus, the ith iteration for ρ = .3 had exactly the same 

treatment randomization and Z
1
 and Z

2
 vectors as the ith itera-

tion for ρ = .7. These data sets were subsequently analyzed in four 

ways using SAS PROC MIXED (SAS Institute, 2003). First, the 

data were analyzed using a traditional analysis of variance (non-

spatial analysis with no covariate). This analysis ignores the spa-

tial structure of the response variable and does not utilize any 

information that the covariate may contribute. Second, the data 

were analyzed using an analysis of covariance (nonspatial analysis 

of covariance), where a separate analysis was conducted for each 

of the three covariates. This exploits any information the covari-

ate has to off er; however, it still ignores the spatial structure that 

is present in the data. Next, the data were analyzed using an 

analysis of variance that included a spatial component in the 

model but ignored the covariate (spatial analysis with no covari-

ate). Finally, an analysis of covariance (one for each of the three 

covariates) that included a spatial component in the model was 

conducted to exploit the spatial structure and the information 

available from the covariate to improve estimation (spatial analy-

sis of covariance). These analyses were compared on the basis of 

percent rejection rate of the F-tests for overall equal means.

A similar simulation study was conducted at the conclusion 

of the fi rst experiment. In the second study, the response vari-

able was generated by selecting the center observation of each 

plot to characterize the entire plot. This corresponds to the case 

where the researcher uses a single data point (e.g., data obtained 

by means of a core sample) to represent the response of the entire 

plot. Again, to investigate whether or not greater experimental 

precision can be obtained by utilizing all intensively collected 

data points, the three diff erent covariates (Fig. 3) were consid-

ered. It was of interest to determine whether or not the covariate 

whose support was identical or nearest to that of the response 

resulted in more accurate experimental results. Finally, 1000 

data sets were generated and analyzed as described above for each 

value of ρ (using the same seed value as in the previous study for 

each ρ), and the analyses were compared on the basis of percent 

rejection rate of the F-tests for overall equal means.

A fi eld experiment was conducted to establish credibility of 

the simulation study. The experiment was conducted on a turf-

grass site near Ithaca, NE. The site was divided into a 5 × 5 grid 

of 25 plots, each plot 1 m square. Each plot was further divided 

into another 5 × 5 grid (each subdivision 20 cm square). The 

plots were treated with fi ve diff erent rates of 46-0-0 urea nitro-

gen: kg/ha–1, 6.1 kg/ha–1, 12.2 kg/ha–1, 24.4 kg/ha–1, and 48.8  

kg/ha–1. The experimental design was a 5 × 5 knight’s move Latin 

square. This type of design employs the idea that  repetitions of a 

treatment should be a knight’s move (from chess) apart (Martin, 

Figure 3. Illustration of the covariate selection. (a) The covariate 

is obtained from the central point of the plot. (b) The covariate 

is obtained by averaging the observations in the central 3 × 3 

square of the plot. (c) The covariate is obtained by averaging all 25 

observations in the plot.
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1986). Visual quality measurements were taken on a scale of 1 

to 9 with a 9 indicating best turfgrass quality on each of the 25 

points within each plot before nitrogen application, yielding a 

total of 625 quality measurements. Yield measurements were also 

taken at each of the 625 points 3 wk after nitrogen application. 

The response variable for each of the 25 plots was generated in 

three ways: as the yield measurement of the center point of the 5 

× 5 grid within the plot, as the average of the 9 yield measure-

ments in the central 3 × 3 square of each plot, and as the average 

of the 25 yield measurements within each plot. The covariate for 

each plot was also constructed in three ways: as the quality mea-

surement of the center point of the 5 × 5 grid contained in the 

plot, as the average quality measurement of the 9 observations 

in the central 3 × 3 square of each plot, and as the average of all 

25 quality measurements within each plot. The data were ana-

lyzed for each of the three response variables using the maximum 

likelihood method in SAS PROC MIXED as follows: using a 

traditional analysis of variance, using an analysis of covariance 

for each of the three covariates (with a quadratic polynomial of 

the quality measurements as the covariate), using a spatial analysis 

of variance, and using a spatial analysis of covariance for each of 

the three covariates. The analyses were compared based on their 

values of the corrected Akaike information criteria (AICC).

RESULTS

Tables 1a–1c show the rejection rates of the F-tests for overall 
equality of means when the response variable is calculated 
as an average over all 25 observations in a plot. As expected, 
the rejection rates for the spatial models are higher than the 
rejection rates for the nonspatial models, and the rejection 
rates are higher when the covariate is included in the analysis 

than when it is ignored. Moreover, note 
that the increase in power obtained by 
using an analysis of covariance is more 
substantial when the correlation between 
the response and the covariate is strong. 
As shown in Table 1c, all analyses come 
close to the nominal 5% level when the 
null hypothesis of no treatment eff ect is 
simulated. Finally, when the correlation 
between the response and covariate is 
strong, the rejection rates are higher for 
the model whose covariate consists of 9 
observations than for the model whose 
covariate consists of a single observation, 
and they are the highest for the model 
whose covariate is comprised of all 25 
observations in the plot. However, when 
the correlation between the response and 
covariate is weak, there is very little dif-
ference between the rejection rates for all 
three covariate analyses (Tables 1a and 
1b). In this case, it appears that the sup-
port of the covariate does not have a dra-
matic result on the analysis.

When the response variable is gen-
erated from the central observation of each plot, the simu-
lation study yields rejection rates slightly higher than the 
nominal 5% level when the null hypothesis of no treatment 
eff ect is true (Table 2c). Therefore, the rejection rates in 
Tables 2a and 2b have been adjusted to the 5% rejection 
rate. For example, the spatial analysis of variance rejects the 
null hypothesis 8.8% of the time when the null hypothesis 
is true. The 50 smallest p values in this case are all less than 
.0214; thus, to obtain a true rejection rate of 5% when the 
null hypothesis is true, a signifi cance level of .0214 is used. 
Tables 2a and 2b shows the rejection rates of the F-tests for 
overall equality of means (using the adjusted signifi cance 
levels) when the response variable is generated from the 
single central observation of each plot. Again, the rejection 
rates are higher for the spatial models than for the non-
spatial models, and the rejections rates are higher when a 
covariate is used than when it is ignored. Also, as the cor-
relation between the response and the covariate increases, 
there is a more sizeable increase in the power of the analysis 
when the covariate is added to the model. Finally, when the 
correlation between the covariate and response is strong, 
the rejection rates are highest for the model whose covari-
ate also consists of a single observation. However, when 
the correlation between the covariate and response is weak, 
there is hardly any diff erence between the rejection rates 
(Tables 2a and 2b). Again, in this case, it appears that the 
support of the covariate has little eff ect on the results.

Tables 3a–3c show the AICC for the various analyses of 
the fi eld experiment. Smaller AICC values indicate a better 

Table 1a Rejection rates for analyses with response averaged over all 25 observa-

tions in the plot and with treatment effects equally spaced.†

ρ = .3 ρ = .7

No. of observations in covariate NS/NOCOV S/NOCOV NS/COV S/COV NS/COV S/COV

1 0.350 0.874 0.386 0.885 0.512 0.963

9 – – 0.389 0.894 0.556 0.977

25 – – 0.395 0.899 0.570 0.983

Table 1b. Rejection rates for analyses with response averaged over all 25 observa-

tions in the plot and with treatment effects in maximum–minimum confi guration.

ρ = .3 ρ = .7

No. of observations in covariate NS/NOCOV S/NOCOV NS/COV S/COV NS/COV S/COV

1 0.376 0.880 0.400 0.878 0.520 0.953

9 – – 0.407 0.888 0.575 0.973

25 – – 0.411 0.886 0.586 0.975

Table 1c. Rejection rates for analyses with response averaged over all 25 observa-

tions in the plot and with no treatment effect.

ρ = .3 ρ = .7

No. of observations in covariate NS/NOCOV S/NOCOV NS/COV S/COV NS/COV S/COV

1 0.051 0.041 0.053 0.042 0.049 0.044

9 – – 0.054 0.041 0.048 0.032

25 – – 0.047 0.042 0.050 0.030

†NS/NOCOV, nonspatial analysis with no covariate; S/NOCOV, spatial analysis with no covariate; NS/COV, non-

spatial analysis of covariance; S/COV, spatial analysis of covariance.
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fi t of the model to the data. When analysis of covariance 
was utilized in a nonspatial analysis, the case in which the 
covariate was calculated as the average of all 25 observa-
tions in the plot yielded the best-fi tting model. Also, the 
spatial analysis of covariance (when the covariate was cal-
culated from the average of all 25 observations) yielded the 
best-fi tting model when the response was generated from 
the center observation of the plot. When the response was 
averaged over all 25 observations in the plot and over the 
9 observations in the central 3 × 3 square of the plot, the 
spatial analysis of covariance (when the covariate was calcu-
lated from 9 observations) yielded the best-fi tting model.

DISCUSSION AND CONCLUSIONS
First, and not surprisingly, the results of the simulation 
study indicate that the use of a model which accounts for 
spatial structure is superior to the use of a conventional 
model which ignores this component of the response vari-
able. Also, an analysis which makes use of information 
from a covariate is more powerful than an analysis which 
ignores the covariate; moreover, the stronger the correla-
tion between the covariate and the response variable, the 
more valuable is the information the covariate has to off er. 
It should be mentioned that a negative correlation between 
the response and the covariate can exist. The results given 
in this chapter refer to only positive values for the correla-
tion coeffi  cient since it is the magnitude, not the sign, of the 

correlation that is important. Though 
not reported here, the study arrived at 
similar conclusions when negative val-
ues for ρ were simulated.

In addition, the results indicate 
that if a strong relationship exists 
between a response variable and its 
covariate, using information from the 
covariate whose support is nearest to 
that of the response yields the most 
precise experimental results. When the 
response is calculated as the average of 
all 25 observations in the plot and the 
correlation between the response and 
covariate is strong, the most powerful 
analysis is that which utilizes a covari-
ate also obtained from a block average 
of the 25 points in the plot. Also, when 
the central point observation of the plot 
is recorded as the response and the cor-
relation is strong, the analysis is most 
powerful when the covariate is also 
of point support. Finally, though the 
results are not  presented, the authors 
also performed a simulation study in 
which the response variable was calcu-
lated as a block average of the central 9 

observations. Not surprisingly, the most powerful analy-
sis in this case is again that which utilizes information 
from the covariate whose support is identical to that of the 
response. On the other hand, if a weak relationship exists 
between the response variable and its covariate, the eff ects 
of changing the support of the covariate do not appear to 
be as dramatic.

Finally, the model information criteria (AICC) for 
the various analyses of the fi eld experiment can be used 
to illustrate the results of the simulation study. First, 
examine the case where the response is averaged over the 
9 observations in the central 3 × 3 square of the plot. 
When accounting for spatial structure, the model which 
uses the covariate whose support is identical to that of the 
response (i.e., when the covariate is also calculated from 
the 9 observations) provides the best fi t. Next, examine 
the other cases where the response was generated from 
either the central observation of the plot or the average 
of all 25 observations in the plot. According to the results 
of the simulation study, the spatial model which uses the 
covariate whose support is identical to that of the response 
is expected to provide the best fi t. However, when the 
response is the center observation of the plot, the AICC 
is smallest when the support of the covariate is the block 
average of all 25 observations. Also, when spatial structure 
is considered and the response is the block average of all 
25 observations, the AICC is smallest when the support 

Table 2a. Rejection rates (adjusted to 5% signifi cance level) for analyses with 

response generated from the center observation in the plot and with treatment 

effects equally spaced.†

ρ = .3 ρ = .7

No. of observations in covariate NS/NOCOV S/NOCOV NS/COV S/COV NS/COV S/COV

1 0.235 0.486 0.258 0.523 0.419 0.730

9 – – 0.268 0.496 0.405 0.641

25 – – 0.290 0.495 0.387 0.557

Table 2b. Rejection rates (adjusted to 5% signifi cance level) for analyses with 

response generated from the center observation in the plot and with treatment 

effects in maximum–minimum confi guration.

ρ = .3 ρ = .7

No. of observations in covariate NS/NOCOV S/NOCOV NS/COV S/COV NS/COV S/COV

1 0.259 0.484 0.283 0.516 0.450 0.754

9 – – 0.308 0.501 0.431 0.650

25 – – 0.321 0.503 0.409 0.560

Table 2c. Rejection rates for analyses with response generated from the center 

observation in the plot and with no treatment effect.

ρ = .3 ρ = .7

No. of observations in covariate NS/NOCOV S/NOCOV NS/COV S/COV NS/COV S/COV

1 0.062 0.088 0.063 0.095 0.059 0.082

9 – – 0.061 0.091 0.056 0.100

25 – – 0.055 0.090 0.061 0.111

†NS/NOCOV, nonspatial analysis with no covariate; S/NOCOV, spatial analysis with no covariate; NS/COV, non-

spatial analysis of covariance; S/COV, spatial analysis of covariance.
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Table 3a. Corrected Akaike information criteria (AICC) for 

analyses with response generated from the center observa-

tion in the plot. For the spatial analyses, the nugget and par-

tial sill for the response variable are given.

No. of observations 
in covariate

Nonspatial 
analysis

Spatial analysis

No covariate effect 30.8 35.0 (nugget = .03148, sill = .07487)

1 33.6 39.0 (nugget = .03087, sill = .07039)

9 31.9 36.0 (nugget = .01129, sill = .08414)

25 21.8 28.1 (nugget = 0.0000, sill = .06021)

Table 3b. AICC for analyses with response averaged over the 

9 observations in the central 3 × 3 square of the plot. For the 

spatial analyses, the nugget and partial sill for the response 

variable are given.

No. of observations 
in covariate

Nonspatial 
analysis

Spatial analysis

No covariate effect 5.6 10.8 (nugget = .01715, sill = .02260)

1 9.5 15.6 (nugget = .01625, sill = .02378)

9 2.7 1.6 (nugget = .00192, sill = .03800)

25 −3.9 2.0 (nugget = .00770, sill = .01471)

Table 3c. AICC for analyses with response averaged over all 

25 observations in the plot. For the spatial analyses, the nug-

get and partial sill for the response variable are given.

No. of observations 
in covariate

Nonspatial 
analysis

Spatial analysis

No covariate effect −0.6 0.3 (nugget = .00708, sill = .02441)

1 3.3 4.7 (nugget = .00651, sill = .02538)

9 0.4 −4.4 (nugget = .00000, sill = .02723)

25 −5.3 −2.9 (nugget = .00192, sill = .01939)

of the covariate is the block average of the 9 observations 
in the central 3 × 3 square of the plot. This can be attrib-
uted to the spatial structure of the covariable used in this 
fi eld experiment. In the simulation study itself, no nugget 
eff ect was generated. However, a nugget eff ect does exist 
in the fi eld experiment. A geostatistical analysis reveals 
that fi tting a spherical model to the covariate yields a nug-
get of .0055 and a partial sill of .0028. Note that the nug-
get is almost twice the size of the partial sill. Because of 
this inherent variability, it is no surprise that averaging 
over some of the observations to obtain the covariate leads 
to a better fi tting model than if the covariate is obtained 
from a single observation. The variability is reduced con-
siderably when averaging over 9 observations as opposed 
to 1; however, the variability does not decrease as drasti-
cally when averaging over 25 observations as opposed to 
9. Therefore, when the response is averaged over either 9 
or 25 observations, the AICC drops considerably as the 
model changes from using a single point as the covariate 
to using a block average of 9 observations. As the model 
changes from using an average of 9 observations to 25 
observations, the AICC actually increase, but the criteria 
are only slightly diff erent.

Note that the simulation study expresses the results 
of this experiment on average, while the fi eld experiment 
gives results for only one data set. If the covariable in this 
experiment would have alternatively possessed a strong spa-
tial structure with a nugget which was small relative to the 
partial sill, it is expected that the results of the fi eld experi-
ment would have been in agreement with the simulation 
study. Similarly, since the nugget for the response variable 
was relatively large in many cases, the nonspatial analysis 
sometimes yielded a smaller AICC value than the spatial 
analysis. If the spatial structure of the response had been 
strong and the nugget eff ect for the response relatively small 
in all cases, it is expected that the fi eld experiment would 
have been in accord with the simulation results.

In conclusion, this study has shown that methods 
which exploit both underlying spatial structure and infor-
mation from a covariate are most effi  cient, especially when 
a strong correlation exists between the response and the 
covariate. Also, this study has addressed questions regard-
ing the use of intensively collected data points as covari-
ates. Based on the results of this simulation, the authors 
recommend the following:

1. If the correlation between the response and the 
covariate is strong, then the support of the covari-
ate should be as close as possible to the support of 
the response variable to obtain the most accurate 
experimental results.

2. If the correlation between the response and the 
covariate is weak, then the support of the covariate 
in relation to the support of the response variable has 
little eff ect on the analysis. Since it is known what 

support is best for the covariate when the correlation 
is strong and that it will make little diff erence in the 
case where the correlation is weak, the researcher 
should once again use a covariate whose support is as 
close as possible to that of the response variable.

3. If there is little or no spatial structure in the covari-
ate, then using the average of all georeferenced 
values which are contained in the support of the 
response variable is optimal.
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